Refined Inference on Long Memory in Realized Volatility
نویسنده
چکیده
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et. al. (2001), Martens et. al. (2004)). The present paper provides some analytical explanations for this evidence and shows how recent results in Lieberman and Phillips (2004a, 2004b) can be used to refine statistical inference about d with little computational effort. In contrast to standard asymptotic normal theory now used in the literature which has an O ¡ n−1/2 ¢ error rate on error rejection probabilities, the asymptotic approximation used here has an error rate of o ¡ n−1/2 ¢ . The new formula is independent of unknown parameters, is simple to calculate and highly user-friendly. The method is applied to test whether the reported long memory parameter estimates of Andersen et. al. (2001) and Martens et. al. (2004) differ significantly from the lower boundary (d = 0.5) of nonstationary long memory.
منابع مشابه
REFINED INFERENCE ON LONG MEMORY IN REALIZED VOLATILITY BY OFFER LIEBERMAN and PETER
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et al., 2001; Martens et al., 2004). The present article provides some illustrative analysis of how long memory may arise from the accumulative process underlying realized volatility. The article also uses results in Lieberm...
متن کاملRealized Volatility in Noisy Prices: a MSRV approach
Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...
متن کاملRealized stochastic volatility with leverage and long memory
! ! The daily return and the realized volatility are simultaneously modeled in the stochastic volatility model with leverage and long memory. In addition to the stochastic volatility model with leverage for the daily returns, ARFIMA process is jointly considered for the realized volatilities. Using a state space representation of the model, we estimate parameters by Markov chain Monte Carlo met...
متن کاملExponential Smoothing, Long Memory and Volatility Prediction
Extracting and forecasting the volatility of financial markets is an important empirical problem. Time series of realized volatility or other volatility proxies, such as squared returns, display long range dependence. Exponential smoothing (ES) is a very popular and successful forecasting and signal extraction scheme, but it can be suboptimal for long memory time series. This paper discusses po...
متن کاملScaling and memory in the return intervals of realized volatility
We perform return interval analysis of 1-min realized volatility defined by the sum of absolute high-frequency intraday returns for the Shanghai Stock Exchange Composite Index (SSEC) and 22 constituent stocks of SSEC. The scaling behavior and memory effect of the return intervals between successive realized volatilities above a certain threshold q are carefully investigated. In comparison with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006